
JOURNAL OF COMPUTATIONAL PHYSICS 96, 369-390 (1991) 

The Effect of Filtering on the Pseudospectral Solution of 
Evolutionary Partial Differential Equations 

L. S. MULHOLLAND AND D. M. SLOAN 

Department of Mathematics, University of Strathclyde, Glasgow Gl IXH, Scotland 

Received March 13, 1989; revised May 22, 1990 

This paper examines the effect of filtering on the solution of time-dependent partial differen- 
tial equations by the pseudospectral method. It is shown that if spatial discretisation is effected 
using the Fourier pseudospectral method the computed solution will be an approximation to 
the solution of a modified differential equation. The changes in dispersive and dissipative 
properties induced by the modification are examined, and numerical results are presented 
which illustrate these changes for both linear and nonlinear equations. Numerical results are 
also presented which show the effect of tiltering on Chebyshev pseudospcctral solutions of 
time-dependent equations. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

Several authors have used filtering to improve the stability properties of 
pseudospectral solutions of evolutionary partial differential equations. Here we use 
the word pseudospectral, as introduced by Orszag [lo], to describe a method 
which differs from a Galerkin method in its treatment of nonlinear terms; in the for- 
mer, a fully-aliased transform technique is used to evaluate convolution sums. As 
shown in the text by Canuto et al. [2], a pseudospectral method is algebraically 
equivalent to a collocation method. In this note we use the words pseudospectral 
and collocation synonymously. 

Fornberg and Whitham [4] performed extensive calculations on the Korteweg- 
de Vries (KdV) equation using a method which combined Fourier collocation in 
space and a leap-frog discretisation in time. They introduced a form of filter which 
enabled them to increase the linear stability limit on the time-step by a factor of 
five. He-Ping Ma and Ben-Yu Guo [7] proposed a Fourier pseudospectral 
scheme for the KdV equation which contained a filtering device designed to control 
nonlinear instabilities, and Guo and Cao [l] extended the idea to deal with the 
regularised long wave equation. Majda, McDonough, and Osher [8] have 
examined the effect of filtering on the accuracy of Fourier spectral solutions 
of linear hyperbolic equations. These authors directed their attention to high 
frequency oscillations induced by a discontinuity in the initial data. They 
demonstrated that a well-chosen smoothing operator could stabilise an unstable 
method and that this smoothing, together with a certain smoothing of the initial 
data, could yield infinite order accuracy away from the discontinuity. 
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In the case of collocation approximations of non-periodic solutions the need for 
filtering appears to be more pronounced. Outlying eigenvalues of first-order 
Chebyshev pseudospectral differentiation matrices have magnitude O(P), where N 
is the number of collocation points [3]. This leads to time-step stability restrictions 
of the form At = O(N -‘) when integrating first-order hyperbolic systems by an 
explicit pseudospectral method, and this is much more severe than the O(N- ‘) 
restriction which applies with finite difference methods. Gottlieb and Turkel [6] 
proposed a filter which, they claimed, yielded unconditionally stable explicit 
methods. However, Fulton and Taylor [S] subsequently established that the 
Gottlieb-Turkel filter could lead to absolute instability for any time-step. Fulton 
and Taylor suggested that the effect of filtering “is similar to the computational 
dispersion seen in centred finite difference approximations.” This dispersive effect 
was also noted by Nouri [9] in filtered, pseudospectral solutions of a linear KdV 
equation. 

Weideman and Trefethen [ 111 examined the effect of filtering on the spectral 
radius of second-order Chebyshev pseudospectral differentiation matrices. The 
matrices in this case have outlying eigenvalues of magnitude O(N4) for large N. 
Weideman and Trefethen concluded that every filter which they examined led to a 
loss of accuracy in the low eigenvalues. The aim here is to add a little to the under- 
standing of the physical nature of accuracy loss in pseudospectral solutions of time- 
dependent partial differential equations which might result from filtering. We are 
particularly interested in loss of accuracy in smooth solutions brought about by the 
dispersion and dissipation which is introduced by filtering. In Section 2 we consider 
Fourier pseudospectral solutions of homogeneous, linear, constant coefficient 
equations. There it is shown that a filtered solution is a solution of a modified 
differential equation, and numerical results illustrate the effect of this modification. 
Numerical results presented in Section 3 show that filtering introduces related 
changes to non-periodic problems solved by Chebyshev pseudospectral methods. In 
Section 4 the interplay between nonlinearity and filtering is considered, and conclu- 
sions are contained in Section 5. 

2. PERIODIC SOLUTIONS OF LINEAR EQUATIONS 

2.1. Modifications Induced by Filtering 

Initially we consider the homogeneous, linear, constant coefficient partial 
differential equation 

u, + Lu = 0, (2.1) 

where L = Cp= i p,D’, with D = a/ax and pr = const for r = 1, 2, . . . . R. Suppose that 
u(x, t) satisfies 2n-periodic initial conditions and the periodic boundary condition 

u(x + 275 t) = u(x, t), (x, t)E R x [O, T-J. (2.2) 
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To solve this problem by a pseudospectral method the interval [0,2n] is discretised 
by N+ 1 equidistant points with spacing Ax = 2x/N, and u( ., t) is approximated by 
U( ., t) E RN, which has the value U(xj, t) at x = xi = j Ax, j= 0, 1, . . . . N - 1. If N is 
assumed to be even, with M = N/2, the vector U( ., t) is transformed to discrete 
Fourier space by 

O(p, t) = (FU( ., f))(p) = L Nf’ U(xj, t)eC2n”‘N, 
fij=O 

p= -A4, -M+ 1, . ..) M- 1. 
(2.3) 

The inversion formula for the discrete transform (2.3) is 

U(xj, t) = (F-l@., t))(x,) =I “c’ 0(p, t)e2niip’N, 
JGp= -M 

j=O, 1 , . . . . N- 1. 
(2.4) 

Transformations (2.3) and (2.4) can be performed efficiently by means of the fast 
Fourier transform algorithm (FFT). Derivatives of u with respect to x may also be 
approximated efficiently by the FFT algorithm: for example, the rth derivative at 
(xi, t) is given by (F-‘li( ., t))(xj), where p(p, t) = (I@)’ C&p, t). If this is denoted 
by U”‘(xj, t), and z denotes the Nth root of unity, exp(2ni/N), then 

U”‘(Xj, f)=+,~~~ (ip)’ ir(p, t) Zip. (2.5) 

A filtered approximation to the rth derivative is given by 

where Q, is a real, non-negative filter function satisfying CT~ = 1, gp = cPp, and 
uIp, is a decreasing function of (pi. Many of the popular filters may be written in 
the form 

up = f a,(ip)2s, a,= 1, (2.7) 
s=O 

where a, depends on M: we assume this form in the subsequent analysis. If crp in 
(2.6) is expanded as in (2.7) we obtain 

Ul,“(Xj, t) = J- y JN,=-M[~ou.(iP)2~](ip).6(P,1)Z* 

=,~oas[-&p~lf~ (@)‘+‘“~(p, f)z*] 

=sfo%U (‘+ 2=)(xj, t), 
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and this may be written as 

(2.8) 

Note that if a, = 0 for s > 0 then rr,, = 1 and (2.8) reduces to U$‘(x,, t) = U”‘(X~, t). 
If the discretisation of the spatial derivatives in (2.1) is effected using a Fourier 

pseudospectral method incorporating the filter (2.7), it follows from (2.8) that the 
semi-discrete equations are effectively 

o(Xj, t) + 2 /ir U”‘(Xj, t) + f U,~~"+2"'(Xj~ f, =OY 

[ 1 (2.9) 
i-=1 s=l 

for j= 0, 1, . . . . N- 1, where the dot denotes differentiation with respect to time. 
(2.9) may be written as 

tqx,, t) + (LU)(Xj, t) + (L, U)(Xj, t) = 0, 

where L, is the differential operator defined by 

(2.10) 

L,= 2 p, f asD’+2s, 
r=l s=l 

(2.11) 

with D = a/ax. Equation (2.10) shows that, as a result of the filtering, the computed 
solution may be regarded as an approximation to the 2rr-periodic solution of 

u,+Lu+L,u=O, (2.12) 

with initial conditions similar to those prescribed for (2.1). The filter has therefore 
introduced an additional, well-defined spatial operator to the differential equation. 

The filter which we use in the computations described later is the exponential 
filter 

g, = e-f@= (2.13) 

in which K is a non-negative constant. This filter may, of course, be expanded as 
in (2.7) with a, = KS/s!. Other filters which have been used elsewhere in pseudo- 
spectral calculations are the Lanczos filter, 

sin(2np/N) 
Op = (27cpfN) ’ 

and the raised cosine filter, 

C-J~ = ; [ 1 + cos(27rp/N)]. 

The filters (2.14) and (2.15) may also be expanded as in (2.7). 

(2.14) 

(2.15) 
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Special cases. Particular forms of the constant coefficient, linear equation (2.1) 
used in numerical illustrations in this section are 

(i) the advection equation 

ut+pz4,=o, (2.16) 

(ii) the KdV equation 

u, + pu, + EU,,, = 0, (2.17) 

and 

(iii) Burgers’ equation 

24, + pu, - EU, = 0. (2.18) 

If the pseudospectral derivatives are filtered by means of (2.7) the modified 
equations associated with (2.16), (2.17), and (2.18) are, respectively, 

u,+p4,+p f a,u(1+2”)=0, (2.19) 
s=l 

a, 

24, + pu, + EU,,, + c a,[ /.d + 2s) + Ed3 + *q = 0 (2.20) 
s=l 

and 

m 
24, + pu, - EU,, + 1 a,[ pP + 2s) - Ed2 + *q = 0. (2.21) 

s=l 

Here u(‘) denotes the rth spatial derivative of U. 

2.2. Dispersion and Dissipation 

A monochromatic, 2x-periodic solution of (2.1) has the form 

u(x, t) = Af++CP’), (2.22) 

where p is an integer (non-negative), and it is readily shown by substitution in 
(2.1) that 

cp= i pJip)‘-‘. (2.23) 
r=l 

The solution of the modified equation (2.12), coincident with (2.22) at t = 0, is 

u,(x, t) = Ae’P’“-w, (2.24) 
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and it is readily shown that 

dP=cPoP. (2.25) 

This equation gives information on the dispersion and dissipation introduced by the 
filtering process. 

The filtering effect is more readily seen in terms of the three special cases 
described by (2.16), (2.17) and (2.18). The values of cP for these models are, 
respectively, 

cp = I4 (2.26a) 

cp = p - &P2, (2.26b) 

cp = p - i&p. (2.26~) 

If we consider the exponential filter (2.13) the corresponding values of d, are, 
respectively, 

d, = pe ~ KP2, (2.27a) 

dp=(p--&p2)ePKp2, (2.27b) 

d, = (p - i&p)ePKJ”. (2.27~) 

The dispersion-free advection equation has dispersion introduced by the filtering 
process: the magnitude of the phase velocity is reduced in a frequency-dependent 
manner and the phase lag is more pronounced at high frequencies. Analogous 
frequency-dependent phase changes occur in solutions of the KdV equation and the 
Burgers’ equation. The complex terms in cp and d, reflect the dissipation in Burgers’ 
equation. In this case the monochromatic solution 

u(x 3 f) = Aeip(-~-P)e-w2’ 

of (2.18) is modified by exponential filtering to 

(2.28) 

uF(x, t) = Ae ip(x -pe-KPZt)e -ep2emK$* (2.29) 

This shows that the damping has actually been diminished by the filtering process. 
Filtered pseudospectral solutions of a dissipative equation suffer dispersion and a 
relaxation of the damping. 

It should be noted that the group velocity is also modified by pseudospectral 
filtering. The group velocities associated with (2.22) and (2.24) are defined by 
(d/dp)(pc,) and (d/dp)(pd,), respectively. In the case of the advection equation and 
the exponential filter, for example, these are given by 

respectively. 

gp=P and gp=p(1-2Kp2)e-Kp2, (2.30a), (2.30b) 
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2.3. Numerical Illustrations 

To illustrate the induced dispersion we considered the pseudospectral solution of 
the linear KdV equation (2.17). The solution is particularly simple for the 
monochromatic initial condition 

U(xj, 0) = cos(mxj), j=O, 1, . . . . N- 1, (2.31) 

with m an integer in the range 0 <m < M ( = N/2). The solution of the filtered 
equation at t = T is 

U(xj, T) = cos[m(xj - c,v,,, T)], (2.32) 

with c, given by (2.26b). The operator modification viewpoint has provided a 
precise description of the filtering effect in this linear, monochromatic case. 

Figures la, b show the filtered and unfiltered solutions of the linear KdV 
equation from initial condition (2.31), with m = 2 and m = 3 in (a) and (b), respec- 
tively. The filtered and unfiltered solutions at time T= 1 are represented by the 
unbroken and broken curves, respectively. Filtering is achieved using the exponen- 
tial filter (2.13) with K= & and the parameters in equation (2.17) are chosen as 
p = 6, E = 5/m=, so that c, = 1 for each solution. The phase lag of the filtered 
solution, 1 - cr,, is seen clearly in the figures. 

To illustrate the change in dissipative properties brought about by filtering we 
considered the filtered pseudospectral solution of the linear Burgers equation (2.18) 
from the initial condition (2.31). In this case the exact solution of the pseudo- 
spectral equations at time t = T is 

U(xj, T) = ep 0~“2Tcos[m(xi - a,pT)]. (2.33) 

The unbroken and broken curves in Figs. 2 show the filtered and unfiltered solu- 
tions of (2.18) at T= 1. As in the KdV solution we use the exponential filter with 
K= &. Figures 2a and b show solutions for m = 1 and m = 2, respectively, with 
parameter values p = E = 1 in each case. The phase lag, 1 - (T,, induced by the 
filtering is again evident. Furthermore, the diminution of the dissipation is clearly 
seen. The amplitude of the mode m solution at t = T is increased from e-Cm2T to 
e -umEm2T by the filtering process. For the parameter set chosen here the change in 
dissipation is very significant for modes with m > 2. For example, at m = 3 the 
amplitude at T= 1 is increased from 0.00012 to 0.026 by the filtering process. 

Filters (2.14) and (2.15) are very weak for small values of p. However, if these 
filters are used in pseudospectral calculations it is readily shown that short 
wavelength modes suffer significant dispersive and dissipative changes like those 
catalogued above. 

Figures 3 are included to illustrate the change in group velocity due to filtering. 
We considered unfiltered and filtered solutions of the advection equation (2.16), 
with initial conditions defined by the wave packet 

U(xj, 0) = eC16(qP I)’ sin(mxj), j=O, 1, . . . . N- 1. (2.34) 

581/96/2-10 
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~ Filtered 

- Filtered 
--- Unfiltcrcd 
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FIG. 1. Filtered and unfiltered solutions of (2.17) at time T= 1, with initial condition (2.31), fi = 6, 
s = S/m2 and filter (2.13) with K=O.l; M = 2 and m = 3 in (a) and (b), respectively. 
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FIG. 2. Filtered and unfiltered solutions of (2.18) at time T= 1, with initial condition (2.31), p= 1, 
:= 1 and filter (2.13) with K=O.l; M= 1 and m=2 in (a) and (b), respectively. 
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FIG. 3. Solutions of (2.16) with initial condition (2.34), p = 1, m = 32, N= 256, and filter (2.13): (a), 
(b), and (c) give the initial profile at T= 0, the unfiltered solution at T= 1, and the filtered solution at 
T= 1 with K= l/4096, respectively. 

This initial condition provides initial values CC&, 0) via (2.3) and the pseudospec- 
tral solution at time f = T is then given by exact solution in Fourier space followed 
by Fourier inversion as in (2.4). We chose m = 32 and set N to 256 to give sufficient 
resolution of the high frequency wave. Results are displayed for the advection equa- 
tion with p = 1, and filtering is performed by the exponential filter with K= &. 
Equation (2.30) shows that the group velocities in unfiltered and filtered cases for 
this parameter set are, respectively, 1 and 0.39. Figure 3a shows the initial profile 
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FIG. 3-Continued 

(2.34) with the packet centred at x = 1. Figure 3b shows the unfiltered solution at 
T= 1 with the packet centred at x = 2 and Fig. 3c shows the filtered solution at 
T= 1 with the packet at x = 1.39. Note also that the wave packet is wider in the 
filtered solution as a result of the induced dispersion. 

3. LINEAR EQUATIONS AND CHEBYSHEV METHODS 

In this short section we present solutions of the linear Burgers equation 

u, + u, = u,, (x, f)~(-1, 1)x(0, Tl (3.la) 

4x, 0) = W), XE c-1, l] (3.lb) 

4-L t)=f(t), 4 + 1, t) = g(t), t~(0, Tl (3.lc) 

We seek a solution of the form 

u,dx, c)= 5 ai Ti(x), (3.2) 
i=O 

where Ti(x) is the Chebyshev polynomial of the first kind of degree i. Here the 
collocation equations are constructed by setting the residual of (3.la) and (3.2) to 
zero at the Gauss-Lobatto points: 

xi = cos( ?rj/N), j= 1,2, . . . . N- 1. (3.3) 
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Let U(t) be the (N+ 1) component vector 

t-~&o, r), ~,(X,, t), ...’ u/v(x,, f)lT 

and let U,(t) and U,,(t) be analogous vectors with components (aU,/ax)(x,, t) 
and (a2u,/8x2)(x,, t) forj= 0, 1, . . . . N. It may be shown (see, for example, [2 or 93) 
that 

U,=(C-9”‘C)U (3.4) 

and 

u,, = (C - ‘lY2’C) u, (3.5) 

where D(l) and Dc2) are the so-called differentiation matrices of first and second 
order, and C is the Chebyshev transformation matrix. C and C -’ are symmetric 
(N+ 1) x (N+ 1) matrices. If [UL denotes the jth component of the vector U we 
may write the collocation, or pseudospectral, equations as 

dU [ 1 z ,= [(c-‘(o’*‘-D(l))c)u]j, j= 1, 2, . ..) N- 1. 
J 

This set is conjoined with the boundary conditions [U(t)&= g(t) and 
[U(t)], =f(t) to give an inhomogeneous linear system of the form 

f$kV+F, 

where V(t) = [ U,(x,, r), U,(x,, t), . . . . U,(x,- i, t)]=, F is a time-dependent 
(N - 1 )-vector, and A is an (N - 1) x (N - 1) constant matrix. 

In a filtered Chebyshev pseudospectral approach we smooth the interpolant 
before differentiation. That is, prior ot the construction of spatial derivatives we 
multiply the coefficient ai in (3.2) by a filter function Bi, where pi is a decreasing 
function of i which satisfies 

O<Bi<l for i = 0, 1, . . . . N; 

Bi 1( l9 O<i$N, 

Bi < l, i N N. 

The effect of filtering is to replace the pseudospectral equations (3.6) by 

dU [ 1 x = [(c-‘(o’2’-D(1)) BC)U],, j= 1, 2, . . . . N- 1, 
J 
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in which B is a diagonal (N+ 1) x (N+ 1) matrix with elements /JO, PI, . . . . j?,,,. This, 
of course, leads to a modification of (3.7). Unlike the Fourier case, the effect of 
filtering on the Chebyshev method cannot be put in terms of a simple modification 
to the partial differential equation. We propose to illustrate the effect of filtering by 
means of numerical computations. 

The linear equation (3.7) was solved numerically for unfiltered and filtered 
derivatives using the fully implicit scheme 

A [v”+’ -VI +vn”+vq +; [F”+‘+F”, 

- Filtered 

0.020 
--- Unfiltered 

1 

x 

- Filtered 
--- Unfiltered 

FIG. 4. Filtered and unfiltered solutions of (3.1), boundary conditions from (3.10) and filter 
fi, =exp( -i’/lOO); (a) and (b) give solutions at T=0.5 and T= 1, respectively. 
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or 

dV > n+l=Fn (3.9) 

where V” approximates V at t = t, = n At. The time independent matrix d may be 
factorised before the start of the time evolution. 

The scheme (3.9) was used to solve (3.la), with initial and boundary conditions 
given by the exact solution 

u(x, t) = ec9’ cos[3(x - t)]. (3.10) 

In the filtered computations the exponential filter Bj = exp( -iz/lOO) was used. 
Figures 4a, b show the computed solutions at times T = 0.5 and T = 1.0 obtained 
using At = 0.001 and N= 64. As in the case of Fourier filtering of the linearised 
Burgers equation, there is evidence of a diminution of the dissipation and of a 
phase shift. Of course, in this case there is also an effect arising from the boundary 
constraints which operates equally in unfiltered and filtered cases. Scheme (3.9) was 
also used to approximate a solution of (3.la) with initial condition 

u(x, 0) = x(x’ - 1). 

The results were qualitatively similar to those displayed in Figs. 4 in terms of 
reduction in dissipation and change in phase. 

4. NONLINEAR SOLUTIONS BY FOURIER METHODS 

4.1. Induced Stability by Filtering 
Consider the nonlinear advection equation 

0, + (u + a)u, = 0, (x, t) E E-L, Ll x (0, Tl (4.1) 

Here a is a real parameter and it is assumed that the solution u vanishes near the 
boundaries x= +L. For convenience we transform the spatial variable in (4.1) to 
X= (n/L)(x + L) and seek a 2rr-periodic solution u(X, t) which satisfies 

u, + p(u + a)ux = 0, C-K t) E R x (0, Tl (4.2) 

with p denoting n/L. As in Section 2.1 we approximate u( ., t) by U( ., t) E RN, which 
has the value U(Xj, t) at X=X, =jAX=2xj/N, j=O, 1, . . . . N- 1. In the filtered 
case the pseudospectral scheme used here is a leap-frog scheme which may be 
written for j = 0, 1, . . . . N - 1 as 

U(Xj, t + At) = U(Xj, t - At) - 2pAt( U(Xj, 1) + a)(F-‘(ipa, o(p, t)))(X]), (4.3) 
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and this is replaced by an Euler step to compute U(Xj, At), j= 0, 1, . . . . N- 1. For 
the unfiltered case we replace bP in (4.3) and in the Euler step by unity. 

The focus of interest here is the interaction between the nonlinearity in (4.3) and 
the dispersion induced by the filtered derivative. If ~~ is the general filter function 
given by (2.7), then the argument leading to (2.8) shows that the filtered solution 
by (4.3) will be equivalent to an unfiltered pseudospectral solution of the modified 
equation 

u,+p(u+a)u,+p(u+a) f a,u”+2”‘=0, (4.4) 
S=l 

a 

1 .oo 

i’ 
-20 -15 -10 -5 

x 

b 

0.8 - 

9 
2 
; 
J 

1 
-20 -1s -10 -5 5 10 15 20 

-0.2 J 

x 

FIG. 5. Solutions of (4.1) with initial condition (4.6) and filter (2.13): (a) is unfiltered at T=6.5; 
(b) is filtered at T= 10 and K=O.l; (c) is filtered at T= 5 and K=O, 0.01, 0.1; (d) is filtered at T= 5, 
K=O.l, and a = -1, 0, 1. 
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where u(‘) denotes the rth spatial derivative of U. All filtered computations described 
in this section were performed using the exponential filter gP = e-Kp2 and, in this 
case, the modified equation becomes 

u, + p(u + a)[u”’ + Kd3) + ;K*d5’ + ;K3d7) + . ‘. ] = 0. (4.5) 

For K 6 1 this equation is in some respects similar to the KdV equation, and we 
are therefore interested in determining whether filtered solutions of (4.1) have any 
of the interesting properties associated with KdV solutions. 

Equation (4.1) was solved with a = 0.2, L = 20 and the initial condition 

u(x, 0) = 0.75 sech’(0.25x). (4.6) 

d 
-~ al=- I 

- - a=0 
I .oo 

1 

- @.=+I 

Y  

__ k-0 
- -  krO.01 

-  . -  k=O.l 

FIG. S-Continued 
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Computations were performed using At = 0.01 and N= 256. The unfiltered solution 
at time T = 6.5, as displayed in Fig. 5a, shows clearly the steepening at the wave 
front, and shortly after this instant the wave becomes discontinuous. (The discon- 
tinuity develops slightly later, at approximately T = 9, in the exact solution of (4.1) 
and (4.6).) The solution filtered by eP = e-p2i’o is shown in Fig. 5b for the later time 
T= 10.0. This solution has a soliton-like appearance, with no steepening at the 
wave front. Figure 5c shows the solutions at time T= 5.0 obtained using the filter 
rrP = e-Kp2, with K= 0, 0.01, 0.1. Note the tendency to soliton shape as K increases. 

The filter introduces an additional feature to the solution, and this is a trough 
which develops and increases in depth as time evolves. At a given time the depth 
increases with Ial and it occurs at the front or back of the wave according as a<0 
or a > 0. Figure 5d shows the trough at time T = 5.0 with a = - 1, 0, 1 and filter 
constant K= 0.1. The trough does not occur if a = 0. Numerical experiments with 
a = 1 and several values of K indicate that the trough is a consequence of the 
filtering and it is not a property of the exact solution of the differential equation. 

4.2. Recurrence in Filtered Advection Solutions 

In Section 4.1 we observed that Fourier-filtered solutions of (4.1) displayed 
properties like those of the KdV equation. Here we pursue this analogy by 
investigating whether solutions of (4.1) might reproduce the recurrence 
phenomenon first described by Zabusky and Kruskal [12]. The reader is referred 
to the original paper for details. 

To investigate the recurrence phenomenon we solved (4.1) for 0 < x d 2, t > 0 
using the initial condition v(x, 0) = COS(IIX). The transformation to (4.2) is effected 
via X= rrx, so that p = n in the difference scheme (4.3). All computations were 
performed using the exponential filter with constant K = 0.01, and with discreti- 
sation parameters At = 0.001 and N = 256. 

3 

2 

0 

x 

FIG. 6. Solution of (4.1) at time T= 1, with initial condition cos(nx), a=2, and filter (2.13) with 
K= 0.01. 
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FIG. 7. Solution of (4.1) at various times with initial condition cos(xx), a = 6, and filter (2.13) with 
K=O.Ol: (a) T= 1; (b) T=2; (c) T=2.7, first recurrence; (d) T=4; (e) T=5; (f) T= 5.38, second 
recurrence. 

Figure 6 shows the solution of (4.1) with a = 2 at time T= 1.0. By this time the 
profile shows several solitons. We conducted extensive numerical experiments which 
revealed, inter alia, that solitons pass through each other without noticeable distor- 
tion and that the propagation velocity of a soliton is proportional to its amplitude. 

Figures 7a-f show the solution corresponding to a = 6 at several values of time. 
Figures 7a, b show three solitons at times T= 1.0 and T= 2.0; in Fig. 7c the solitons 
have coalesced at T= 2.70 to produce a profile which resembles the original cosine, 
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albeit with a phase shift. This recurrence is repeated in Figs. 7d, e, f, where the 
profiles are shown at times T = 4.0, 5.0, and 5.38. The results displayed in Figs. 7c, 
f suggest that a phase-shifted cosine profile is produced at integer multiples of a 
recurrence time TR, where T, is approximately 2.7 for a = 6. 

To emphasize the stabilising effect of the filtering process we have shown the 
unfiltered solution for a = 6 at time T = 0.35. At this time the unfiltered solution is 
about to become discontinuous at the wave front. The global accuracy of Fourier 
spectral solutions of linear hyperbolic systems with discontinuous initial data has 
been examined in detail by Majda, McDonough, and Osher [8]. They have shown 
that the Fourier method is globally inaccurate in the absence of proper smoothing. 
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FIG. 7-Continued 

In regions which exclude the discontinuity the accuracy is reduced to O(N-‘) for 
any t>O. Majda et al. have shown, however, that spectral accuracy can be 
recovered away from the discontinuity if appropriate filtering is applied. In the 
constant coefficient case they have shown that suitable filtering of the continuous 
Fourier coefficients of the initial data will suflice, since there is no mechanism for 
the generation of high frequency modes during the time evolution. In the case of 
variable coefficients, however, this initial-data smoothing has to be supplemented 
by a filtering of the discrete Fourier coefficients in the formation of spatial 
derivatives as time evolves. 
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FIG. 8. Unfiltered solution of (4.1) at time T=0.35 with initial condition cos(nx) and a =6. 

5. CONCLUSIONS 

Filtered Fourier pseudospectral solutions of linear, time-dependent partial 
differential equations are considered. It is shown that if the spatial derivatives are 
filtered the effect is to produce a solution of a modified differential equation. This 
modification may introduce false dispersion, or diffusion, depending on the struc- 
ture of the original spatial differential operator. Numerical results are presented to 
illustrate these effects. Results are also presented on filtered Chebyshev pseudospec- 
tral solutions. There, too, the effects of false dispersion and dissipation are evident. 

The effect of filtering on pseudospectral solutions of the nonlinear advection 
equation is examined. Numerical results show that the interaction between non- 
linearity and false dispersion is capable of producing solutions which have some 
soliton properties. This fascinating interaction is also capable of producing numeri- 
cal solutions of the advection equation which exhibit the Zabusky-Kruskal [12] 
recurrence phenomenon. However interesting the spurious soliton solutions might 
be one should not lose sight of the main objective associated with filtering. It 
should be stressed that filtering is introduced to control the growth of high 
frequency modes and that this is done at the cost of accuracy loss in the low modes. 
A proper choice of filter is a compromise between these competing effects. It is 
hoped that the results presented here will give further insight into the effects of 
filtering on pseudospectral solution of evolutionary partial differential equations 
and that this might contribute to the construction of acceptable filters. 
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